Search results for "craniofacial abnormalities"

showing 10 items of 26 documents

Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish

2017

Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular cal…

0301 basic medicineAquatic OrganismsQH301-705.5ScienceMorphogenesisZoologycraniofacial abnormalitiesGeneral Biochemistry Genetics and Molecular BiologyTranscriptome03 medical and health sciencescardiac abnormalitiesAdverse Outcome PathwayMorphogenesisAnimalsWater PollutantsBiology (General)crude oilEcologyGeneral Immunology and MicrobiologybiologyEcologyGeneral NeuroscienceGadiformesQRGeneral MedicineHaddockbiology.organism_classificationPhenotypeGadiformesPetroleum030104 developmental biologychemical geneticsGenomics and Evolutionary BiologyMedicineOtherChemical geneticsAtlantic haddocktranscriptomeHomeostasisResearch Article
researchProduct

The oculoauriculofrontonasal syndrome: Further clinical characterization and additional evidence suggesting a nontraditional mode of inheritance

2018

IF 2.264; International audience; The oculoauriculofrontonasal syndrome (OAFNS) is a rare disorder characterized by the association of frontonasal dysplasia (widely spaced eyes, facial cleft, and nose abnormalities) and oculo-auriculo-vertebral spectrum (OAVS)-associated features, such as preauricular ear tags, ear dysplasia, mandibular asymmetry, epibulbar dermoids, eyelid coloboma, and costovertebral anomalies. The etiology is unknown so far. This work aimed to identify molecular bases for the OAFNS. Among a cohort of 130 patients with frontonasal dysplasia, accurate phenotyping identified 18 individuals with OAFNS. We describe their clinical spectrum, including the report of new features…

0301 basic medicineMaleInheritance Patterns030105 genetics & heredityfrontonasal dysplasiawhole exome sequencingCraniofacial Abnormalities0302 clinical medicinePolymicrogyriaEye AbnormalitiesEar External10. No inequalityChildGenetics (clinical)Exome sequencingwhole genome sequencingThyroid agenesisHypoplasiaDNA-Binding ProteinsPhenotypeChild PreschoolFemaleRespiratory System Abnormalitiesmedicine.medical_specialtyAdolescentQuantitative Trait LociOculoauriculofrontonasal syndrome03 medical and health sciencesExome SequencingGeneticsmedicineHumansGenetic Predisposition to DiseaseFrontonasal dysplasiaGenetic Association StudiesWhole genome sequencingHomeodomain Proteinsbusiness.industryFacial cleftSkullInfant NewbornFaciesInfant030206 dentistrymedicine.diseaseDermatologySpine[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsDysplasiabusinessTomography Spiral ComputedTranscription Factors
researchProduct

De Novo and Inherited Pathogenic Variants in KDM3B Cause Intellectual Disability, Short Stature, and Facial Dysmorphism

2019

Contains fulltext : 202646.pdf (Publisher’s version ) (Open Access) By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone …

0301 basic medicineMaleJumonji Domain-Containing Histone DemethylasesDevelopmental DisabilitiesWEAVER SYNDROMEPROTEINHaploinsufficiencyCraniofacial AbnormalitiesHistones0302 clinical medicineIntellectual disabilityTumours of the digestive tract Radboud Institute for Molecular Life Sciences [Radboudumc 14]Missense mutationDEMETHYLASE KDM3BExomeChildGenetics (clinical)Exome sequencingGeneticsRUBINSTEIN-TAYBI SYNDROMEMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]Phenotype030220 oncology & carcinogenesisFemalemedicine.symptomHaploinsufficiencyRare cancers Radboud Institute for Health Sciences [Radboudumc 9]Joint hypermobilityGENETICSJMJD1CMutation MissenseDwarfismBiologyShort statureKdm3b ; Cancer Predisposition ; Developmental Delay ; Facial Recognition ; Intellectual Disability ; Leukemia ; Lymphoma ; Short Stature03 medical and health sciencesReportIntellectual DisabilitymedicineHumansMYELOID-LEUKEMIAGenetic Association StudiesGerm-Line MutationWeaver syndromeNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Rubinstein–Taybi syndromeMUTATIONSDELETIONGenetic Variationmedicine.diseaseBody HeightMusculoskeletal AbnormalitiesINDIVIDUALS030104 developmental biologyFaceNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]American Journal of Human Genetics
researchProduct

9q33.3q34.11 microdeletion: new contiguous gene syndrome encompassing STXBP1, LMX1B and ENG genes assessed using reverse phenotyping

2016

International audience; The increasing use of array-CGH in malformation syndromes with intellectual disability could lead to the description of new contiguous gene syndrome by the analysis of the gene content of the microdeletion and reverse phenotyping. Thanks to a national and international call for collaboration by Achropuce and Decipher, we recruited four patients carrying de novo overlapping deletions of chromosome 9q33.3q34.11, including the STXBP1, the LMX1B and the ENG genes. We restrained the selection to these three genes because the effects of their haploinsufficency are well described in the literature and easily recognizable clinically. All deletions were detected by array-CGH …

0301 basic medicineMale[ SDV.MHEP.PED ] Life Sciences [q-bio]/Human health and pathology/PediatricsHaploinsufficiencycerebral hypomyelinationwest-syndromeBioinformaticsCraniofacial Abnormalities0302 clinical medicineIntellectual disabilitySTXBP1ChildGenetics (clinical)Nail patella syndromeGeneticsEndoglinSyndrome3. Good healthdevelopmental delayPhenotypeintellectual disabilityMedical geneticsFemaleChromosome DeletionHaploinsufficiencyChromosomes Human Pair 9medicine.medical_specialtyAdolescentLIM-Homeodomain ProteinsBiologyContiguous gene syndromeArticle03 medical and health sciencesMunc18 ProteinsGenetic linkageGeneticsmedicineHumansde-novo mutations[SDV.MHEP.PED]Life Sciences [q-bio]/Human health and pathology/PediatricsdiseaseEpilepsyinfantile epileptic encephalopathyassociationdeletionsmedicine.diseaseHuman genetics030104 developmental biologynail-patella syndrome030217 neurology & neurosurgeryTranscription Factors
researchProduct

Compassionate use of everolimus for refractory epilepsy in a patient with MTOR mosaic mutation

2020

Abstract The MTOR gene encodes the mechanistic target of rapamycin (mTOR), which is a core component of the PI3K-AKT-mTOR signaling pathway. Postzygotic MTOR variants result in various mosaic phenotypes, referred to in OMIM as Smith-Kinsgmore syndrome or focal cortical dysplasia. We report here the case of a patient, with an MTOR mosaic gain-of-function variant (p.Glu2419Lys) in the DNA of 41% skin cells, who received compassionate off-label treatment with everolimus for refractory epilepsy. This 12-year-old-girl presented with psychomotor regression, intractable seizures, hypopigmentation along Blaschko's lines (hypomelanosis of Ito), asymmetric regional body overgrowth, and ocular anomali…

0301 basic medicineOncologyCompassionate Use Trialsmedicine.medical_specialty[SDV]Life Sciences [q-bio]030105 genetics & heredityMuscle hypertrophyCraniofacial Abnormalities03 medical and health sciencesInternal medicineGeneticsmedicineHumansEverolimusChildMechanistic target of rapamycinProtein Kinase InhibitorsGenetics (clinical)PI3K/AKT/mTOR pathwayHypopigmentationEverolimusbiologybusiness.industryMosaicismTOR Serine-Threonine KinasesNeuropsychologyGeneral MedicineCortical dysplasiamedicine.disease3. Good healthClinical trialMalformations of Cortical Development[SDV] Life Sciences [q-bio]030104 developmental biologyPhenotypeGain of Function Mutationbiology.proteinFemaleEpilepsies Partialmedicine.symptombusinessmedicine.drug
researchProduct

NF1 microdeletion syndrome: case report of two new patients

2019

Abstract Background 17q11.2 microdeletions, which include the neurofibromatosis type 1 (NF1) gene region, are responsible for the NF1 microdeletion syndrome, observed in 4.2% of all NF1 patients. Large deletions of the NF1 gene and its flanking regions are associated with a more severe NF1 phenotype than the NF1 general population. Case presentation We hereby describe the clinical and molecular features of two girls (aged 2 and 4 years, respectively), with non-mosaic atypical deletions. Patient 1 showed fifteen café-au-lait spots and axillary freckling, as well as a Lisch nodule in the left eye, strabismus, high-arched palate, malocclusion, severe kyphoscoliosis, bilateral calcaneovalgus fo…

0301 basic medicinePathologymedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesGenotype-phenotype correlationNeurofibromatosesLisch noduleContiguous gene syndromePopulationCase ReportContiguous gene syndromeChromosomesCraniofacial Abnormalities03 medical and health sciences0302 clinical medicineAtypical deletionIntellectual DisabilitymedicineHumansMultiplex ligation-dependent probe amplificationNeurofibromatosiseducationChildPreschoolNeurofibromatoseseducation.field_of_studybusiness.industryLearning DisabilitiesPair 17lcsh:RJ1-570Axillary frecklinglcsh:Pediatricsmedicine.diseaseeye diseasesMLPA030104 developmental biologyNF1 geneChild PreschoolFemalemedicine.symptomChromosome DeletionbusinessAtypical deletion; Contiguous gene syndrome; Genotype-phenotype correlation; MLPA; NF1 gene; Child Preschool; Chromosome Deletion; Chromosomes Human Pair 17; Craniofacial Abnormalities; Female; Humans; Intellectual Disability; Learning Disabilities; Neurofibromatoses030217 neurology & neurosurgeryChromosomes Human Pair 17Comparative genomic hybridizationHumanItalian Journal of Pediatrics
researchProduct

Search for a gene responsible for Floating-Harbor syndrome on chromosome 12q15q21.1.

2012

International audience; Floating-Harbor syndrome (FHS) is characterized by characteristic facial dysmorphism, short stature with delayed bone age, and expressive language delay. To date, the gene(s) responsible for FHS is (are) unknown and the diagnosis is only made on the basis of the clinical phenotype. The majority of cases appeared to be sporadic but rare cases following autosomal dominant inheritance have been reported. We identified a 4.7 Mb de novo 12q15-q21.1 microdeletion in a patient with FHS and intellectual deficiency. Pangenomic 244K array-CGH performed in a series of 12 patients with FHS failed to identify overlapping deletions. We hypothesized that FHS is caused by haploinsuf…

AdultHeart Septal Defects VentricularMaleCandidate geneFloating Harbor syndrome[SDV.GEN] Life Sciences [q-bio]/GeneticsHaploinsufficiencyBiologyBioinformaticsShort statureCraniofacial Abnormalities03 medical and health sciences12q15q21.1 microdeletion[SDV.BDD] Life Sciences [q-bio]/Development BiologyGeneticsmedicineHumansAbnormalities MultipleGenetic Predisposition to Disease[ SDV.BDD ] Life Sciences [q-bio]/Development BiologyChild[SDV.BDD]Life Sciences [q-bio]/Development BiologyGenetics (clinical)Growth Disorders030304 developmental biologySequence DeletionPhenocopyGenetics0303 health sciencesComparative Genomic Hybridization[SDV.GEN]Life Sciences [q-bio]/GeneticsChromosomes Human Pair 12Genetic heterogeneity030305 genetics & heredityChromosomeHigh-Throughput Nucleotide Sequencinghigh-throughput sequencingmedicine.disease3. Good healthPhenotypeFloating–Harbor syndromeChild PreschoolMutation (genetic algorithm)Femalemedicine.symptomHaploinsufficiency[ SDV.GEN ] Life Sciences [q-bio]/Genetics
researchProduct

Not All Floating-Harbor Syndrome Cases are Due to Mutations in Exon 34 of SRCAP

2013

International audience; Floating-Harbor syndrome (FHS) is a rare disorder characterized by short stature, delayed bone age, speech delay, and dysmorphic facial features. We report here the molecular analysis of nine cases, fulfilling the diagnostic criteria for FHS. Using exome sequencing, we identified SRCAP as the disease gene in two cases and subsequently found SRCAP truncating mutations in 6/9 cases. All mutations occurred de novo and were located in exon 34, in accordance with the recent report of Hood et al. However, the absence of SRCAP mutations in 3/9 cases supported genetic heterogeneity of FH syndrome. Importantly, no major clinical differences were observed supporting clinical h…

AdultHeart Septal Defects VentricularMaleDNA Mutational AnalysisBiologyShort statureCraniofacial Abnormalitiesgenetic heterogeneity03 medical and health sciencesExonGeneticsmedicineHumansAbnormalities MultipleGenetic Predisposition to DiseaseChildFloating-Harbor syndromeGenetics (clinical)Exome sequencingGrowth Disorders030304 developmental biologyDisease geneGeneticsAdenosine Triphosphatases0303 health sciences[SDV.GEN]Life Sciences [q-bio]/GeneticsGenetic heterogeneity030305 genetics & heredityBone ageExonsmedicine.diseaseSRCAP3. Good healthFloating–Harbor syndromeSpeech delayMutationFemalemedicine.symptom[ SDV.GEN ] Life Sciences [q-bio]/Genetics
researchProduct

Translocations Disrupting PHF21A in the Potocki-Shaffer-Syndrome Region Are Associated with Intellectual Disability and Craniofacial Anomalies

2012

Contains fulltext : 110038.pdf (Publisher’s version ) (Closed access) Potocki-Shaffer syndrome (PSS) is a contiguous gene disorder due to the interstitial deletion of band p11.2 of chromosome 11 and is characterized by multiple exostoses, parietal foramina, intellectual disability (ID), and craniofacial anomalies (CFAs). Despite the identification of individual genes responsible for multiple exostoses and parietal foramina in PSS, the identity of the gene(s) associated with the ID and CFA phenotypes has remained elusive. Through characterization of independent subjects with balanced translocations and supportive comparative deletion mapping of PSS subjects, we have uncovered evidence that t…

AdultMaleAdolescentGenotypePotocki–Shaffer syndromeChromosome DisordersHaploinsufficiencyBiologyHistone DeacetylasesSodium ChannelsTranslocation GeneticArticleChromatin remodelingCraniofacial Abnormalities03 medical and health sciencesSCN3A0302 clinical medicineIntellectual DisabilityNAV1.3 Voltage-Gated Sodium ChannelmedicineTranscriptional regulationGeneticsAnimalsHumansDeletion mappingGenetics(clinical)CraniofacialZebrafishGenetics (clinical)030304 developmental biologyGenetics0303 health sciencesChromosomes Human Pair 11Infant Newbornmedicine.diseaseGenetics and epigenetic pathways of disease DCN MP - Plasticity and memory [NCMLS 6]Child PreschoolHomeoboxFemaleChromosome DeletionHaploinsufficiencyExostoses Multiple Hereditary030217 neurology & neurosurgeryThe American Journal of Human Genetics
researchProduct

Intragenic KANSL1 mutations and chromosome 17q21.31 deletions: broadening the clinical spectrum and genotype-phenotype correlations in a large cohort…

2015

Background The 17q21.31 deletion syndrome phenotype can be caused by either chromosome deletions or point mutations in the KANSL1 gene. To date, about 60 subjects with chromosome deletion and 4 subjects with point mutation in KANSL1 have been reported. Prevalence of chromosome deletions compared with point mutations, genotype–phenotype correlations and phenotypic variability have yet to be fully clarified. Methods We report genotype–phenotype correlations in 27 novel subjects with 17q21.31 deletion and in 5 subjects with KANSL1 point mutation , 3 of whom were not previously reported. Results The prevalence of chromosome deletion and KANSL1 mutation was 83% and 17%, respectively. All patient…

AdultMalemedicine.medical_specialtyAdolescentgenotype-phenotype correlationsKoolen De Vries syndromeKANSL1 mutationHaploinsufficiencyBiologySettore MED/03 - GENETICA MEDICASeverity of Illness IndexCraniofacial AbnormalitiesYoung AdultSeizuresMolecular geneticsGeneticsmedicineHumansAbnormalities MultipleLanguage Development DisordersChildGenetics (clinical)Genetic Association StudiesGeneticsOptic nerve hypoplasiaFetal Growth RetardationPoint mutationMacrocephalyInfantNuclear ProteinsSyndromeclinical heterogeneitySmith–Magenis syndromemedicine.diseaseChild PreschoolSpeech delayFemalemedicine.symptomChromosome DeletionSmith-Magenis SyndromeHaploinsufficiencyChromosomes Human Pair 1717q21.31 deletion
researchProduct